
Introduction to Stone Duality

Sri Pranav Kunda

These notes come from ”A Short Introduction to Stone Duality” by Dr. Alexander Kurz.
Proofs of propositions are provided, and remarks on the content are added for additional
background.

1 Structure Preserving Maps and Duality

Definition 1.1. Let f : X → Y . Then f∗ : 2Y → 2X defined by, for b ∈ 2Y ,

f∗(b) = {x ∈ X : f(x) ∈ b}

is called the inverse image function of f .

Remark: The inverse image function is also called the preimage and can be denoted by
f−1(x) on other writings.

Proposition 1.2. Given a function f : X → Y , the inverse image function f∗ preserves
unions, intersections, and complements.

Proof. Let S ⊆ 2Y and suppose x ∈
⋃

s∈S f∗(s). This means x is in at least one of f∗(s) so
that, by definition, f(x) is in at least one s and x ∈ f∗(

⋃
s∈S s).

Since the converse follows similarly, f∗(
⋃

s∈S s) =
⋃

s∈S f∗(s). It is easy to see that f∗

preserves intersections in the same way.

Finally, x ∈ f∗(¬a) ⇐⇒ f(x) ̸∈ a ⇐⇒ x ̸∈ f∗(a) ⇐⇒ x ∈ ¬f∗(a), completing the proof.

Definition 1.3 (Adjoints). Let R : 2Y → 2X . Then L : 2X → 2Y is left-adjoint to R
(and R is right-adjoint to L) if for all a ∈ 2X and b ∈ 2Y ,

L(a) ⊆ b ⇐⇒ a ⊆ R(b). (1.1)

Remark: The phrases L is a left adjoint and L has a right adjoint are equivalent.

Lemma 1.4. If L is left-adjoint to R, a ⊆ R(L(a)) and L(R(b)) ⊆ b.

Proof. Since L(a) ⊆ L(a), a ⊆ R(L(a)) by (1.1). Similar reasoning shows that L(R(b)) ⊆
b.

Definition 1.5 (Monotone Function). A function F : 2X → 2Y is monotone if for any
a, a′ ∈ 2X , a ⊆ a′ ⇒ F (a) ⊆ F (a′).

Lemma 1.6. If F : 2X → 2Y has a left or right adjoint, F is monotone.
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Proof. For concreteness we assume that F has a right adjoint R. We show that both F and
R are monotone. Define a, a′ as in definition 1.5.

By Lemma 1.4, a ⊆ a′ ⊆ R(F (a′)). From (1.1) we see that if a ⊆ R(F (a′)), F (a) ⊆ F (a′).
A similar argument invoking the latter portion of Lemma 1.4 shows that R is monotone.

Lemma 1.7. Let L : 2X → 2Y and R : 2Y → 2X . If L and R are monotone and a ⊆
R(L(a)) and L(R(b)) ⊆ b for all a ∈ 2X and b ∈ 2Y , then L is left-adjoint to R.

Proof. Suppose L(a) ⊆ b. Since L is monotone, a ⊆ R(L(a)) ⊆ R(b). Conversely, suppose
a ⊆ R(b). Because R is monotone, L(a) ⊆ L(R(b)) ⊆ b. Thus L is left-adjoint to R (and R
is right-adjoint to L).

Lemma 1.8. Left and right adjoints are unique.

Proof. We omit the proof for right adjoints because it is similar to the proof for left adjoints.
Let F : 2X → 2Y and suppose L,L′ are left-adjoint to F . Then a ⊆ R(L′(a)) by Lemma 1.4.
It follows from (1.1) that L(a) ⊆ L′(a). Likewise, a ⊆ R(L(a)) ⇒ L′(a) ⊆ L(a). Thus
L = L′.

Proposition 1.9. Any function g : 2Y → 2X which preserves intersections and unions has
a left adjoint g∃ : 2X → 2Y and a right adjoint g∀ : 2X → 2Y . Moreover, g∃ and g∀ preserve
unions and intersections respectively.

Proof. We prove more generally that (i) g has a left adjoint g∃ if and only if g preserves
intersections and that (ii) g has a right adjoint g∀ if and only if g preserves unions. The
proof of (ii) is excluded for brevity since it is similar to (i).

Define g∃(a) =
⋂
{y : a ⊆ g(y)} and suppose g preserves intersections. Let a ⊆ a′.

Then g(a ∩ a′) = g(a) = g(a) ∩ g(a′) ⇒ g(a) ⊆ g(a′). Thus g is monotone. Hence,
g∃(a) ⊆ b ⇒ g(b) ⊇ g(g∃(a)) ⊇ a since g preserves intersections and a ⊆ g(b) ⇒ g∃(a) ⊆ b.
It is easy to see that g∃ preserves unions from the definition, completing the proof.

It is useful to note that if g preserves both unions and intersections, then we may write
equivalently that g∃(a) = {y ∈ Y | ∃x ∈ g({y}) : x ∈ a}.

Definition 1.10 (Atom). a ⊆ X is an atom if for all S ⊆ 2X , a ⊆
⋃
S implies that there

exists an a′ ∈ S such that a ⊆ a′.

Proposition 1.11. a ∈ 2X is an atom if and only if there exists x ∈ X s.t. a = {x}.

Proof. Suppose there exists x ∈ X s.t. a = {x}. Then for any S ⊆ 2X , we have that if
a ⊆

⋃
S, there exists some a′ ∈ S s.t. x ∈ a′. Then a ⊆ a′ since a is a singleton containing x.

For the converse, suppose a is an atom. First, observe that a is nonempty, otherwise we
may choose S = ∅ so that there exists no a′ ∈ S s.t. a ⊆ a′ although a ⊆

⋃
S.

For a contradiction, suppose |a| > 1. Choosing S = {{x} : x ∈ a}, we see that a ⊆
⋃

S.
However, a is not contained in any a′ ∈ S. Thus |a| = 1 and the proof is complete.

Lemma 1.12. Let g : 2Y → 2X preserve unions and intersections. Then the left adjoint of
g (which exists and is unique by Proposition 1.9 and Lemma 1.8) maps atoms to atoms.
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Proof. Let a ∈ 2X be an atom, let S ⊆ 2Y s.t. g∃(a) ⊆
⋃

S, and let T = {g(s) : s ∈ S}.
Then a ⊆ g(

⋃
S) =

⋃
T by the definition of the adjoint. Since a is an atom and T ⊆ 2X ,

there exists a′ ∈ T s.t. a ⊆ a′. Because a′ = g(s) for some s ∈ S, we have that g∃(a) ⊆
g∃(g(s)) ⊆ s by Lemmas 1.4 and 1.6

Proposition 1.13. Every function g : 2Y → 2X that preserves unions and intersections is
the inverse image function for a unique g∗ : X → Y .

Proof. By Lemma 1.12, g has a unique left adjoint g∃ which maps atoms to atoms. Define
g∗(x) = g∃({x}). We show that (g∗)

∗ is right adjoint to g∃ so that g is the inverse image
function of g∗ : X → Y by the uniqueness of adjoints.

It has already been shown that both g∃ and (g∗)
∗ are monotone and preserve unions. Hence,

(g∗)
∗(g∃(a)) =

⋃
x∈a(g∗)

∗(g∃({x})) ⊇ a and g∃((g∗)
∗(b)) =

⋃
y∈b g∃((g∗)

∗({y})) ⊆ b.

We retain the notation g∗ to denote the function for which g is the inverse image function.

Theorem 1.14. There is a bijection between functions 2Y → 2X which preserve unions
and intersections and functions X → Y .

Proof. By Proposition 1.13, there exists a unique g∗ : X → Y for every union/intersection
preserving g : 2Y → 2X so that (g∗)

∗ = g. Similarly, every f : X → Y has a unique inverse
image function f∗ by definition. Hence we have a bijection.
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2 Algebraic Duality

2.1 Algebraic Preliminaries

There are two equivalent definitions of a lattice, one which uses partially ordered sets and
another which defines a lattice as an algebraic structure. Only the latter is below, but the
former can be found on the Wikipedia page.

Definition 2.1 (Lattice). A lattice is a structure (A,∧,∨), where A is a set and ∧ and ∨
are binary, commutative, and associative operations on A which satisfy the following (called
absorption laws) for all x, y ∈ A:

L1. x ∨ (x ∧ y) = x

L2. x ∧ (x ∨ y) = x.

∧ is read ”meet” and ∨ is read ”join.”

Lemma 2.2 (Idempotence). Let (A,∧,∨) be a lattice. For any x ∈ A,

x ∧ x = x and x ∨ x = x.

Proof. Choose y = x ∨ x from Definition 5. Then x ∧ y = x by (L2), meaning

x ∨ (x ∧ y) = x ∨ x = x

by (L1). The argument for ∧ follows similarly.

Definition 2.3 (Partial Order on Lattices). We may define a partial order ≤ on a lattice
A, which generalizes ⊆ from the previous section. For x, y ∈ A, define

x ≤ y if x ∧ y = x, or

x ≤ y if x ∨ y = y.

Definition 2.4 (Bounded Lattice). A lattice A is bounded (or is a bounded lattice) if there
exist 0, 1 ∈ A such that

0 ≤ x ≤ 1 for all x ∈ A.

When there are multiple bounded lattices involved, we avoid confusion by using 1A and 0A
to denote the maximum and minimum elements of the lattice A.

Definition 2.5 (Complete Lattice). A lattice A is complete (or is a complete lattice)
if every T ⊆ A has a supremum and infimum, respectively denoted supT, inf T ∈ A (see
infimum and supremum).

Lemma 2.6. Every complete lattice A is bounded. Note that the converse is not necessarily
true.

Proof. Since A is complete, there exists 0A ∈ A (resp. 1A ∈ A) such that for every lower
bound (resp. upper bound) y ∈ ∅ ⊆ A, 1A ≥ y (resp. 0A ≤ y). Since every y ∈ A is
vacuously a lower bound and an upper bound, the proof is complete.

Lemma 2.7. Every finite lattice A is complete. As a corollary, we have shown that all
finite lattices are bounded.
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Proof. The proof follows easily from the definition of a complete lattice.

Lemma 2.8. Let A be a lattice. For x, y, z ∈ A, the following identities are equivalent:

D1. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

D2. x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

Proof. Assume (D1) holds. Then

(x ∨ y) ∧ (x ∨ z) = ((x ∨ y) ∧ x) ∨ ((x ∨ y) ∧ z)

= x ∨ ((x ∨ y) ∧ z)

= (x ∨ (z ∧ x)) ∨ (y ∧ z)

= x ∨ (y ∧ z)

by associativity/commutativity of ∨ and ∧. The converse follows similarly.

Definition 2.9 (Distributive Lattice). A lattice A is distributive if (D1) (or (D2), equiv-
alently) holds for x, y, z ∈ A.

Definition 2.10 (Complemented Lattice). A lattice A is complemented if for every x ∈ A,
there exists some x′ ∈ A such that x ∧ x′ = 0A and x ∨ x′ = 1A. We call x′ a complement
of x.

Definition 2.11 (Finite Boolean Algebra). A finite Boolean algebra is a finite comple-
mented distributive lattice.

The following lemma allows us to speak of complements in finite Boolean algebras with
reference to exactly one element. Hence, we denote the complement of x by ¬x.

Lemma 2.12. Complements of elements in a finite Boolean algebra C are unique.

Proof. Let x, x′, x′′ ∈ C, where x′ and x′′ are complements of x. Then x′ = x′ ∨ (x ∧ x′′) =
(x′ ∨ x) ∧ (x′ ∨ x′′) = x′ ∨ x′′. This means x′′ ≤ x′. Interchanging x′ and x′′ shows that
x′ ≤ x′′, completing the proof.

Lemma 2.13 (De Morgan’s Laws). Let C be a finite Boolean algebra and let x, y ∈ C.
Then ¬(x ∧ y) = ¬x ∨ ¬y and ¬(x ∨ y) = ¬x ∧ ¬y.

Proof. The proof follows easily from the fact that C is distributive.

Proposition 2.14. Let X be a finite set. By setting the bottom (resp. top) element to be
∅ (resp. X) and meets (resp. joins) to be intersections (resp. unions), 2X forms a finite
Boolean algebra.

Proof. The proof follows easily from the properties of elementary set operations.
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2.2 Properties of Lattice Morphisms

For the remainder of this section, A and B are assumed to be finite (hence bounded) lattices.

Definition 2.15 (Lattice Morphism). f : A → B is a lattice (homo)morphism if for
x, y ∈ A if

f(0A) = 0B

f(1A) = 1B

f(x ∧ y) = f(x) ∧ f(y)

f(x ∨ y) = f(x) ∨ f(y)

Lemma 2.16. Lattice morphisms of Boolean algebras preserve complements.

Proof. The proof follows easily from the fact that lattice morphisms preserve top and bottom
elements.

Definition 2.17 (Adjoints of Lattice Morphisms). Let R : B → A. Then L : A → B is
left-adjoint to R (and R is right-adjoint to L) if for all a ∈ A and b ∈ B,

L(a) ≤ b ⇐⇒ a ≤ R(b).

Definition 2.18 (Monotone Lattice Morphisms). A lattice morphism f : A → B is mono-
tone if for a, a′ ∈ A such that a ≤ a′ f(a) ≤ f(a′).

The following lemmas are also presented without proof since they are nearly identical to the
proofs of Lemmas 1.4-1.8. The main difference is the use of the partial order ≤ instead of
⊆.

Lemma 2.19. If L is left-adjoint to R, a ≤ R(L(a)) and L(R(b)) ≤ b.

Lemma 2.20. If f : A → B has a left or right adjoint, f is monotone.

Lemma 2.21. Let L : A → B and R : B → A. If L and R are monotone and a ≤ R(L(a))
and L(R(b)) ≤ b for all a ∈ A and b ∈ B, then L is left-adjoint to R.

Lemma 2.22. Left and right adjoints (of lattice morphisms) are unique.

Proposition 2.23. Recall that A and B are finite lattices. Then any lattice morphism
g : B → A has a left adjoint g∃ : A → B and a right adjoint g∀ : A → B. Moreover, g∃ and
g∀ preserve joins and meets respectively.

Proof. Like Proposition 1.9, we prove more generally that (i) g has a left adjoint g∃ if and
only if g preserves ∧, 1B , and (ii) that g has a right adjoint g∀ if and only if g preserves
∨, 0B . The proof of (ii) is excluded for brevity since it is similar to (i).

Suppose g preserves meets. For any a ∈ A, let S = {b : a ≤ g(b)} and define g∃(a) =
∧

S.
Let b ≤ b′ for b, b′ ∈ B. Since g(b ∧ b′) = g(b) ∧ g(b′) = g(b), g(b) ≤ g(b′), meaning g is
monotone. Hence, g∃(a) ≤ b ⇒ g(b) ≥ g(g∃(a)) ≥ a since g preserves meets. The fact that
a ≤ g(b) ⇒ g∃(a) ≤ b and that g∃ preserves joins is clear from the definition of g∃.

Remark: This generalizes to infinite lattices if we assume that A and B are complete.
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Definition 2.24 (Completely Join-Prime). We say that x ∈ A \ {0A} is prime (or com-
pletely join-prime) if for all y, z ∈ A, x ≤ y ∨ z implies that x ≤ z or x ≤ y. Let JA

denote the set of join-prime elements of A.

Remark: Similarly, we can say more generally that for a complete lattice L, x ∈ L \ {0L}
is completely join-prime if x ≤

∨
T for any T ⊆ L implies that x ≤ t for some t ∈ T.

Lemma 2.25. The left adjoint g∃ : A → B of a lattice morphism g : B → A maps prime
elements of A to prime elements of B.

Proof. Let a ∈ A be prime, let b1, b2 ∈ B s.t. g∃(a) ≤ b1 ∨ b2, and let ti = g(bi). Then
a ≤ g(b1 ∨ b2) = t1 ∨ t2 by the definition of the adjoint. Since a is prime and t1, t2 ∈ B,
a ≤ tk for some k ∈ {1, 2}. Because tk = g(bk), we have that g∃(a) ≤ g∃(g(bk)) ≤ bk.

2.3 Finite Boolean Algebras and Power Sets

We now turn our attention to Boolean algebras to describe isomorphisms between lattice
morphisms of Boolean algebras and maps of sets. Unless specified otherwise, C,D and X,Y
will denote finite Boolean algebras and finite sets, respectively, for the remainder of this
section.

The following lemma shows how primes correspond to atoms (i.e. singletons) in the previous
section.

Lemma 2.26. p ∈ C is prime if and only if z ≤ p implies z = 0C or z = p. Moreover, for
every x ∈ C \ {0C}, there exists a prime element p ∈ C such that p ≤ x.

Proof. Suppose p is prime. If y < p, p ≤ ¬y since p ≤ y∧¬y. Then y = 0C since y < p ≤ ¬y
and y = y ∧ ¬y = 0C .

For the converse, let a, b ∈ C and suppose p ≤ a ∨ b, p ̸≤ a, and p ̸≤ b. If p > a or p > b, a
contradiction is reached since a = 0C or a = p (and similarly for b). Hence p ∨ a ̸= a and
p ∨ b ̸= b. Then p ∨ a > a and p ∨ b > b. However, this means that

p ∨ a ∨ p ∨ b = p ∨ a ∨ b > a ∨ b,

a contradiction.

Now, for any x ∈ C \ {0C} choose some y < x. If 0C is the only such y, x is prime and we
are done. Setting x = y and repeating this process completes the proof.

Proposition 2.27. For every x ∈ C \{0C}, there exists exactly one nonempty set Sx ⊆ JC

such that x =
∨
Sx. That is, every element of a finite Boolean algebra can be uniquely

represented as a finite join of its prime elements.

Proof. Let x ∈ C \ {0C}. Define Sx = {p | p ≤ x : p is prime}. By Lemma 2.26, Sx defined
in this way is nonempty. Let y =

∨
Sx. If x ∧ ¬y = 0C , x = y since complements are

unique in finite Boolean algebras by Lemma 2.12. Suppose x ∧ ¬y ̸= 0C . Then there exists
a prime element p such that p ≤ x ∧ ¬y ≤ x. However, this contradicts Lemma 2.13, since
this means that p ∈ Sx and p ≤ ¬y.
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For uniqueness, suppose there existed another nonempty set of primes S′
x such that x =∨

S′
x. Then p ≤ x for every p ∈ S′

x, meaning S′
x ⊆ Sx. Suppose S′

x ̸= S. Then there exists
some p0 ∈ Sx such that p0 ̸∈ S′

x and
∨

S′
x ∨ p0 =

∨
S′
x. However, this means that p0 < s

for some s ∈ S′
x, a contradiction. Hence Sx = S′

x.

Proposition 2.28. There exists a bijection C → 2X for some set X. This also shows that
the cardinality of every finite Boolean algebra is a power of two.

Proof. We may let 0C correspond (bijectively) to ∅ ∈ 2X regardless of the choice of X. By
Proposition 2.27, for every x ∈ C \{0C} there exists a unique Sx such that x =

∨
Sx. Define

X = JC . Then let each x ∈ C \ {0C} correspond to the set Sx ∈ 2X so that
∨

Sx = x.
Similarly, let each T ∈ 2X correspond to

∨
T . Thus we have constructed a bijection and

the proof is complete.

Lemma 2.29. Recall that 2X , 2Y are finite Boolean algebras as defined in Proposition 2.14.
Then the inverse image function of a map X → Y is a lattice morphism.

Proof. The proof follows from Proposition 1.2.

Theorem 2.30. There exists a bijection between:

1. finite Boolean algebras and finite sets

2. lattice morphisms D → C and maps X → Y

(2) provides a result more general to Theorem 1.14 by removing the assumption that the
elements of C,D are themselves sets.

Proof. For (1), we let every Boolean algebra C correspond with the finite set JC and let
every finite set X correspond with the Boolean algebra formed by 2X .

For (2), we let every lattice morphism g : D → C correspond to g∃
∣∣
JC

(the restriction of

the left adjoint to primes) and let every map f : X → Y correspond to the inverse image
function f∗ : 2Y → 2X , which is a lattice morphism by Lemma 2.29. (f∗)∃ restricted to
primes is a unique map f : {{x} : x ∈ X} → {{y} : y ∈ Y } and g∃

∣∣
JC

is a unique map
g : JC → JD by Lemma 2.25.

Since J2X = {{x} : x ∈ X} by Lemma 2.26 and there exists an obvious bijection X →
{{x} : x ∈ X}, the proof is complete.
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3 Introducing Category Theory

To more easily discuss the relationships between the areas of mathematics we wish to relate,
it is useful to introduce some ideas in Category Theory.

3.1 Categories, Functors, and Natural Transformations

The following are definitions and propositions that are fundamental in describing additional
categorical concepts.

Definition 3.1 (Category). A category C consists of:

1. A collection of objects ob(C)

2. A collection of morphisms (or arrows), where an arrow f consists of a source object
dom(f) and a target object cod(f). The collection of morphisms from object A to object
B is denoted homC(A,B)

3. An associative composition operation homC(B,C) × homC(A,B) → homC(A,C) de-
noted f ◦ g or fg

4. An identity morphism idA : A → A for every object A, f : A → B, and g : B → A
such that f ◦ idA = f and idA ◦ g = g

Definition 3.2 (Functor). Let C,D be categories and let X,Y be objects in C. A functor
F is a type of homomorphism between categories, consisting of

1. A map ob(C) → ob(D)

2. A map homC(X,Y ) → homD(F (X), F (Y ))

which satisfy

1. F (idX) = idF (X)

2. F (f ◦ g) = F (f) ◦ F (g) for arrows f, g in C.

We may denote F (X) by FX.

Definition 3.3 (Natural Transformation). Let F,G : C → D be functors. A natural
transformation is a mapping η : F → G which assigns, for every object X in C, a
morphism ηX : FX → GX such that for every f : X → Y,

ηY ◦ Ff = Gf ◦ ηX .

Alternatively, the following diagram commutes.

FX GX

FY GY

ηX

Ff Gf

ηY

We may define the composition operation on natural transformations by

(ηη′)X = ηXη′X .
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Definition 3.4 (Epimorphism and Monomorphism). A morphism f : X → Y is said to be
an epimorphism if, for all α1, α2 : Z → X,

α1f = α2f ⇒ α1 = α2.

Similarly, f is a monomorphism if

fα1 = fα2 ⇒ α1 = α2.

Definition 3.5 (Set,BA,Setω,BAω). We define the category Set to be the category for
which the objects are sets and the arrows are functions. Likewise, BA is defined such that
the objects are Boolean algebras and the arrows are Boolean algebra morphisms. We define
Setω and BAω similarly, considering only finite sets and finite Boolean algebras respectively.

Lemma 3.6. In Set, f : X → Y is surjective if and only if it is an epimorphism, and
injective if and only if it is a monomorphism.

Proof. The proof is straightforward and follows quickly from the definitions of injective and
surjective functions.

Definition 3.7 (Isomorphism). An isomorphism is a morphism h : X → Y for which
there exists h−1 : Y → X which is a left and right inverse of h. We call h−1 the inverse of
h.

Definition 3.8 (Functor Category). Let C,D be categories. Then [C,D] is called a functor
category, where the objects are functors and the arrows are natural transformations. For
functors F,G : C → D, we define

Nat(F,G) = hom[C,D](F,G).

Definition 3.9 (Natural Isomorphism). An isomorphism in the functor category is called
a natural isomorphism.

Lemma 3.10. Let F,G : C → D be functors and η : F → G be natural. Then η is a natural
isomorphism if and only if ηX : FX → GX for every X is an isomorphism in D.

Proof. The forward direction follows easily from the definition of a natural isomorphism (a
natural transformation with a left and right inverse) and the composition of natural trans-
formations.

Define η−1 : G → F by η−1
X = (ηX)−1. Since η is natural, Gf ◦ ηX = ηY ◦Ff for f : X → Y

in C and hence
Ff ◦ η−1

X = η−1
Y ◦ (ηY ◦ Ff) ◦ η−1

X = η−1
Y ◦Gf.

Thus, η−1 is natural and the proof is complete.

Definition 3.11 (Small and Locally Small Categories). A category C is said to be small if
ob(C) and hom(A,B) are both sets (and not proper classes) for all objects A,B. A category
is said to be locally small if it has a class of objects and hom(A,B) is a set for all objects
A,B.

Lemma 3.12. The categories Set,BA,Setω, and BAω are locally small.
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Proof. The proof follows from the fact that a function X → Y can be seen as a subset of
2X×Y .

Definition 3.13 (Hom Functor). Let C be a locally small category. Then for each object
A we may define the hom functor hA : C → Set by

hA(B) = hom(A,B) for each object B

hA(f) = f ◦ − for each arrow f : B → C

where f ◦− : hA(B) → hA(C) is the function mapping an arrow g : A → B to f ◦g : A → C.

Lemma 3.14 (Yoneda Lemma). Let C be a locally small category and let F : C → Set.
For every object A there exists a bijection φ : Nat(hA, F ) → FA.

Proof. Define φ(η) = ηA(idA). We first show that φ is injective. Let η, η′ : hA → F be
natural and suppose η ̸= η′. Since η is natural, the following diagram commutes:

A hom(A,A) FA

B hom(A,B) FB

f hAf

ηA

ηB

Ff

Hence, we may conclude that

ηB(f) = (Ff ◦ ηA)(idA)

since it follows from the diagram that

(Ff ◦ ηA)(idA) = (ηBhA)(idA)

and hA(idA) = f ◦ idA = f by the definition of the hom functor. Because η ̸= η′, there
exists an X such that ηX ̸= η′X . However, since ηX(f) = (Ff ◦ ηA)(idA),

ηA(idA) = φ(η) ̸= φ(η′) = η′A(idA).

We now complete the proof by showing that φ is surjective. In particular, we show that for
every a ∈ FA, there exists η such that φ(η) = a. Fix a and define ηB(f) = (Ff)a for every
object B and a ∈ FA. Since F is a functor,

(Ff ◦ ηB)(g) = (Ff ◦ Fg)a = F (f ◦ g)(a) = ηC(fg) = (ηC ◦ hAf)(g),

so that η defined in this way is natural and φ(η) = ηA(idA) = idFA(a) = a.

3.2 Categorical Equivalence and Duality

We can now discuss ”duality” and reformulate Theorem 2.30 as our ”finite duality theorem.”

Definition 3.15 (Equivalence of Categories). Categories C and D are said to be equivalent
if there exist functors F : C → D, G : D → C, and natural isomorphisms IdC ∼= GF,
IdD ∼= FG,
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Definition 3.16 (Cop). The dual category (or opposite category) Cop of a category C
is the category whose objects are the same as C such that we define

homCop(A,B) = homC(B,A).

It is clear from this definition that

(Cop)op = C.

Definition 3.17 (Contravariant and Covariant Functors). A contravariant functor is a
functor Cop → D or, equivalently, a functor C → Dop. An ordinary functor may be called
a covariant functor.

Lemma 3.18. If C and D are equivalent, Cop and Dop are equivalent.

Proof. Since C and D are equivalent, there exist functors F : C → D and G : D → C such
that IdC ∼= GF and IdD ∼= FG are natural. The proof follows from defining the opposite
functor F op : Cop → Dop by F opA = FA and F opf = Ff and considering functors F op

and Gop.

Definition 3.19 (Categorical Duality). Categories C and D are dually equivalent if Cop

and D are equivalent. Alternatively, we may replace the covariant functors in the definition
of categorical equivalence with contravariant functors.

Definition 3.20 (Boolean algebra morphism). A Boolean algebra morphism is an arrow
in BA (or BAω) (i.e. a lattice morphism among Boolean algebras).

Theorem 3.21. Setω and BAω are dually equivalent.

Proof. We first define a functor F : Setω → BAop
ω by letting FS be the Boolean algebra

2S with joins as unions and meets as intersections, and Ff for a map S → T be the inverse
image function 2T → 2S . Similarly, we define a functor G : BAop

ω → Setω by GX = JX

and Gf for a Boolean algebra morphism Y → X as the map g∃
∣∣
JX

: JX → JY (recall that

JX is the set of completely join-prime elements of Boolean algebra X).

We now show that there exist natural isomorphisms IdSetω
∼= GF and IdBAω

∼= FG. Define
α : IdSetω → GF by αS(s) = {s} for every finite set S and s ∈ S. Let f : S → T so that

(GFf ◦ αS)(s) = (αT ◦ IdSetωf)(s) = {f(s)}

by the definition of the identity functor and g∃
∣∣
JX

. By Lemma 3.10, α is a natural isomor-

phism since we may define (αS)
−1({t}) = t, which is a left and right inverse of αS .

The proof that IdBAω
∼= FG is natural follows similarly by considering β : IdBAω

→ FG
defined by βX(x) = {{x}}.

3.3 Adjoint Functors

Adjoints functors in category theory are immensely important and generalize the notion of
”left and right adjoints” which were discussed in the previous sections.
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Definition 3.22 (Adjunction). Suppose C and D are locally small categories. Let L : C →
D and R : D → C be (covariant) functors and let X and Y be a fixed objects in C and D
respectively. Define the pairs of functors

C(X,R−),D(LX,−) : D → Set and C(−, RY ),D(L−, Y ) : C → Set

in a similar fashion to the hom functor. Then L is said to be the left adjoint of R (and R
is said to be the right adjoint of L) if there is an isomorphism

homC(X,RY ) ∼= homD(LX, Y )

natural in X and Y, which gives rise to natural isomorphisms

α : C(X,R−) → D(LX,−) and β : C(−, RY ) → D(L−, Y ).

If such functors L,R exist, we say that there is an adjunction between categories C and
D. In symbols, we write L ⊣ R to say that L is left-adjoint to R.

Remark: We can also define adjunctions without the assumption that C and D are locally
small, but it is not needed for these notes and would require additional work to ensure that
discussing hom functors is sensible.

The following theorems provide very useful conditions for the existence of a right/left adjoint
functor, as well as an intuition for constructing adjunctions. We prove both theorems
simultaneously.

Theorem 3.23 (Unit of an Adjunction). Let R : D → C be a functor. The following are
equivalent for X in C and Y in D:

1. The functor R has a left adjoint L : C → D.

2. There exist a map L0 : ob(C) → ob(D) and ηX : X → RL0X such that for every
f : X → RY, there exists a unique f ♯ : L0X → Y which satisfies Rf ♯ ◦ ηX = f.

We call η a unit of the adjunction L ⊣ R.

Theorem 3.24 (Counit of an Adjunction). Let L : C → D be a functor. The following are
equivalent for X in C and Y in D:

1. The functor L has a right adjoint R : D → C.

2. There exists a map R0 : ob(D) → ob(C) and ϵY : LR0Y → Y such that for every
g : LX → Y, there exists a unique g♭ : X → R0Y which satisfies ϵY ◦ Lg♭ = g.

We call ϵ a counit of the adjunction L ⊣ R.

Proof. We will begin by proving Theorem 3.23. The ”only if” direction of this proof is
adapted from Dr. Alexander Kurz’s notes on this theorem. Suppose (1) and fix X, Y, and
f : X → RY. Since L ⊣ R, there exist natural isomorphisms

α : C(X,R−) → D(LX,−) and β : C(−, RY ) → D(L−, Y ).

Define L0C = LC for every C in C and f ♯ = αY (f). Then let g : L0X → Y and observe
the following diagram:
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homC(X,RL0X) homD(L0X,L0X)

homC(X,RY ) homD(L0X,Y )αY

αL0X

C(X,Rg) D(L0X,g)

Then defining ηX = α−1
L0X

(idL0X) yields

(Rg ◦ ηX)♯ = (α−1
Y (g))♯ = g

by observing that α is a natural isomorphism. Choosing g = f ♯ then gives the desired
equality

(Rf ♯ ◦ ηX)♯ = (f)♯ =⇒ Rf ♯ ◦ ηX = f

since αY is an isomorphism and hence (−)♯ is injective. The uniqueness of f ♯ follows easily
from observing that (Rg ◦ ηX)♯ = f ♯ if Rg ◦ ηX = f.

For the reverse direction, we first construct the functor L and show that η : idC → RL is
natural. LetX ′ inC, let h : X → X ′, and choose Y = L0X

′. Then for f = ηX′◦h : X → RY,
there exists f ♯ : LX → LX ′ such that the following diagram commutes:

X RLX

X ′ RLX ′
ηX′

Rf♯h

ηX

Define LC = L0C and
Lh = f ♯ : LX → LX ′.

It is easy to verify from the above diagram and the uniqueness of f ♯ that L defined in this
way is a functor. Thus, η is natural.

We now define the isomorphism

homC(X,RY ) ∼= homD(LX, Y )

and show that it is natural in X and Y. For any g : LX → Y, define α−1
Y (g) = β−1

X (g) =
Rg ◦ ηX . Let u : Y → Y ′ and v : X ′ → X. Since R is a functor, equation (3.1) yields

α−1
Y ′ (u ◦ g) = Ru ◦Rg ◦ ηX = Ru ◦ α−1

Y (g).

Similarly, since η is natural we have

β−1
X (g ◦ Lv) = Rg ◦RLv ◦ ηX = Rg ◦ ηX′ ◦ v = u ◦ β−1

X′ (g).

Thus, the following diagrams commute:
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homD(LX, Y ) homC(X,RY ) homD(LX, Y ) homC(X,RY )

homD(LX ′, Y ) homC(X
′, RY ) homD(LX, Y ′) homC(X,RY ′)

β−1
X

β−1

X′

D(Lv,Y ) C(v,RY )

α−1

Y ′

D(LX,u) D(LX,Ru)

α−1
Y

The proof is then completed by Lemma 3.10 and the fact that αY (f) = αX(f) = f ♯, since
defining α, β in this way satisfies

αY (α
−1
Y (g)) = g and α−1

Y (αY (f)) = f

and similarly for β.

Remark: The above proof shows that the naturality of β and β−1 is implied by the natu-
rality of α and α−1. Dr. Kurz’s Notes provide more information on the acknowledgement
of this fact in literature.

Lemma 3.25. Adjoints are unique up to (natural) isomorphism.

Proof. Suppose the functor R : D → C has two left adjoints L,L′ : C → D and let X
in C. We will show that there exists a natural isomorphism ϕ : L → L. Define natural
transformations η : X → RLX, η′ : X → RL′X as in Theorem 3.23, and define ϕX = (η′X)♯

for Y = L′X so that RϕX ◦ ηX = η′X . Since R is a functor and η, η′ are natural,

R(L′h ◦ ϕX) ◦ ηX = RL′h ◦RϕX ◦ ηX = RL′h ◦ η′X = η′X′ ◦ h

Similarly,

R(ϕX′ ◦ Lh) ◦ ηX = RϕX′ ◦RLh ◦ ηX = RϕX′ ◦ ηX′ ◦ h = η′X′ ◦ h.

Choosing instead Y = L′X ′, the naturality of ϕ follows from the uniqueness of (η′X′ ◦ h)♯.
Then (ϕ−1)X = (ηX)♯ for Y = LX, from which the proof is completed by Lemma 3.10. To
see this, apply a similar argument to the fact that

R((ηX)♯ ◦ (η′X)♯) ◦ ηX = R(ηX)♯ ◦ η′X = ηX = R(idL′X) ◦ ηX

and likewise for (η′X)♯ ◦ (ηX)♯.

4 Topological Duality

The goal of this section is to now remove the assumption of finiteness on our Boolean algebras
and to find the structure necessary to construct a duality theorem similar to Theorem 3.21
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4.1 Free Algebras

This section discusses the notion of an ”algebra” and its associated ”free algebra.”

Definition 4.1 (Algebra). An algebra is a set X, whose elements are called generators,
a collection of operations, and equations which the operations satisfy.

This collection of operations can be formalized by assigning a set of functions fn : An → A
(each called an n-ary operation) for each n ∈ N. The set of n-ary operations is denoted
by Σ(n).

thFurthermore, the collection of operations can be formalized through
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